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A B S T R A C T   

Machine vision-based precision herbicide application in wheat (Triticum aestivum L.) can substantially reduce 
herbicide input. However, detecting newly emerged weeds in wheat fields remains a challenging task. Current 
deep learning-based weed detection methods require the annotation of a large amount of data, which is both 
time-consuming and labor-intensive. To address this issue, this research improved a semi-supervised learning 
(SSL) algorithm based on consistency regularization and pseudo-labeling, and incorporated an attention mech
anism. Compared to fully supervised learning (FSL) algorithms, the proposed method increased the classification 
accuracy by 16.5%, 17.84%, and 19.67% on datasets with 200 × 200, 300 × 300, and 400 × 400 pixel images, 
respectively, when only 100 labeled data per class were used. Overall, the developed machine vision models 
using the proposed method achieved weed detection with high accuracy while requiring much fewer labeled 
training images, and thus is more time and labor-efficient compared to an FSL algorithm.   

1. Introduction 

Wheat (Triticum aestivum L.) is an important agricultural crop widely 
cultivated in many parts of the world (Asseng et al., 2011). Wheat is one 
of the most important food sources and is a significant contributor to 
global food security (Igrejas and Branlard, 2020; Curtis and Halford, 
2014). Weeds compete with wheat for resources, such as nutrients, 
water, and sunlight, thus hindering wheat growth. As a result, weed 
control is essential to ensure wheat productivity (Khan et al., 2011). In 
the past several decades, herbicide-resistant weed biotypes in wheat 
have been increasingly documented (Norsworthy et al., 2012; Peterson 
et al., 2018; Heap, 2023); however, broadcast-spraying synthetic her
bicides is still the most extensively used strategy for weed control (Xiao 
et al., 2020; Wang et al., 2020). In natural conditions, weeds are 
randomly distributed in wheat fields, while broadcast application of 
herbicides leads to the application in areas where weeds do not occur. 
Manual spot spraying herbicides can reduce herbicide inputs but is 
impractical for large wheat fields (Bàrberi, 2002). 

Accurate and reliable weed detection is the foundation for realizing 

autonomous spot-spraying herbicides. Previous research has utilized 
leaf feature differences to distinguish crops and weeds (Wu et al., 2021). 
For example, weed identification has been performed by extracting 
features such as plant color (Woebbecke et al., 1995; Tang et al., 2000; 
Meyer and Neto, 2008), leaf texture (Burks et al., 2000; Wu and Wen, 
2009; Bakhshipour et al., 2017), shape (Kazmi et al., 2015; Bakhshipour 
and Jafari, 2018), and spectra (Franz et al., 1991; Shirzadifar et al., 
2020) of weeds through image processing techniques. Some scholars 
have improved the accuracy of weed identification by extracting mul
tiple features of weeds (Zhao et al., 2013; Lin et al., 2017; Torres-Sán
chez et al., 2015). However, these methods are primarily based on 
manual design or existing statistical methods to extract features from 
images, which can be cumbersome and complex. 

With the significant advancement in computing technology, tradi
tional image processing techniques are being increasingly replaced by 
deep learning (O’Mahony et al., 2020). As a subset of machine learning 
technology, deep learning can perform complex feature extraction, 
efficiently process large quantities of data, and has demonstrated ca
pabilities in various agricultural fields, such as crop classification 
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(Murmu and Biswas, 2015; Zhong et al., 2019), pest and disease 
recognition (Cheng et al., 2017; Chandy, 2019; Ahmad Loti et al., 2021), 
farmland management (Kamilaris and Prenafeta-Boldú, 2018), crop 
yield prediction (Khaki and Wang, 2019; Van Klompenburg et al., 2020; 
Nevavuori et al., 2019), and crop growth analysis (Bernotas et al., 2019; 
Yasrab et al., 2021). Deep learning convolutional neural networks 
(DCNNs) demonstrated excellent performances for detecting weeds 
growing in various cropping systems, such as corn (Zea mays L.) (Andrea 
et al., 2017; Ahmad et al., 2021), soybean [Glycine max (L.) Merr] (dos 
Santos Ferreira et al., 2017; Razfar et al., 2022), dormant or 
active-growing turfgrass (Yu et al., 2019a; Yu et al., 2019b; Yu et al., 
2019c), and vegetables (Jin et al., 2021; Kennedy et al., 2020). Never
theless, developing effective DCNN models for weed recognition re
quires collecting a large number of training images and performing 
image data labeling. For example, Zhuang et al. (2021) reported that the 
image classification neural networks trained with FSL using a very large 
training dataset containing 22,000 labeled training images effectively 
detected newly emerged broadleaf weed seedlings growing in wheat. 
However, Yan and Wang (2022) highlighted that obtaining sufficient 
labeled training data is often impossible or costly. In addition, some 
weed morphological features are similar to those of crops, thus requiring 
experienced weed scientists to perform the labeling tasks. Consequently, 
there is a need for an approach to training weed detection models with 
only a small amount of labeled data while preserving accurate detection. 

SSL, a branch of deep learning, involves training on a small amount 
of labeled data and a large amount of unlabeled data. SSL can perform 
better with substantially less labeled data than supervised learning, 
which only uses labeled data (Van Engelen and Hoos, 2020). The core 
methods for semi-supervised image classification tasks are consistency 
regularization (Laine and Aila, 2016) and pseudo-labeling (Scudder, 
1965), which are often combined in semi-supervised algorithms (Ber
thelot et al., 2019a,b; Sohn et al., 2020; Zhang et al., 2021). Consistency 
regularization is a method in semi-supervised learning aimed at main
taining the stability of a model to small perturbations in input data. This 
method is based on the assumption that the model’s predictions should 
be consistent for similar input samples. Consistency regularization 
achieves this by introducing data augmentation techniques to apply 
random perturbations to input data and requiring the model to produce 
similar outputs for both the original and perturbed data. This improves 
the model’s robustness and generalization ability on unlabeled data 
(Laine and Aila, 2016). Pseudo-labeling is used to generate artificial 
labels on unlabeled data. This method first trains the model using 
available labeled data and then applies the trained model to unlabeled 
data, generating pseudo-labels for the unlabeled data based on the 
model’s predictions. This allows a portion of the unlabeled data to be 
treated as labeled data, further expanding the training dataset and 
improving the model’s performance and generalization ability (Scudder, 
1965). These unlabeled data can be transformed into labeled data with 
pseudo-labels by utilizing pseudo-labeling and consistency regulariza
tion methods. As a result, this method helps the model better utilize the 
information in the unlabeled data, thereby increasing the size of the 
training dataset, adding more training samples, and improving the ac
curacy and stability of the model. The confidence in these pseudo-labels 
is mostly high, regardless of whether the pseudo-labels are correct. 
However, if a large number of unlabeled samples are given incorrect 
labels and used for training, it can result in a large number of noisy 
samples in the training dataset, adversely affecting the performance of 
the model (Rizve et al., 2021). 

In recent years, the scientific community has demonstrated growing 
research interest in the utilization of SSL algorithms to deal with various 
tasks such as text classification (Yin et al., 2015; Miyato et al., 2016), 
natural language processing (Søgaard, 2013), face recognition (Gao 
et al., 2015), building defect detection (Guo et al., 2021), and precision 
medicine (Chen et al., 2019; Wang et al., 2020). In agriculture, scholars 
recently used SSL to detect rows of crops to separate weeds from crops 
(Nong et al., 2022; Pérez-Ortiz et al., 2015) and assess weed density and 

distribution (Shorewala et al., 2021). To the best of our knowledge, the 
application of SSL in weed detection remains in the nascent stage. The 
objectives of this research were to (1) investigate the performance of SSL 
compared to FSL in detecting and locating weeds growing in wheat using 
training images of varying pixel sizes and labeled data quantities, (2) 
improve the SSL model to make it more suitable for weed classification 
tasks, and (3) evaluate the performance of the improved SSL model. 

2. Materials and methods 

2.1. Dataset preparation 

The training and testing images were taken in early December 2020 
at two separate wheat fields both measuring 3.5 ha in Yangzhou Uni
versity Transcultural Science Experiment Station in Yangzhou, Jiangsu, 
China (32◦20′N, 119◦23′E). The experimental sites were cultivated with 
rice (Oryza sativa L.) in the previous year. The soil at both experimental 
locations was classified as a sandy loam, with a pH of 5.8–7.8. The 
average organic matter content was 16 g kg− 1, alkali-hydrolyzed ni
trogen was 66.3 mg kg− 1, available potassium was 7.2 mg kg− 1, and 
available phosphorus was 59 mg kg− 1. After planting wheat for 
approximately two months, images were randomly captured using a 
digital camera (Panasonic® DMC-ZS110, Xiamen, China) equipped with 
a 10X Leica Vario-Elmar Lens (F2.8–5.9 aperture) under automatic 
exposure settings. The captured images had a resolution of 4300 × 2418 
pixels, with a ground sampling resolution of 0.05 cm pixel− 1, and were 
taken between 9:00 a.m. to 5:00 p.m. under various lighting conditions, 
including clear, cloudy, and partially cloudy skies. Only broadleaf weed 
species were observed in the two sites including cleavers (Galium aparine 
L.), chickweed (Malachium aquaticum L.), Persian speedwell (Veronica 
persica Poir), shepherd’s purse [Capsella bursa-pastoris (L.) Medik], and 
sweet woodruff [Galium odoratum (L.) Scop.]. 

The raw images were cropped, resulting in images of 4200 × 2400 
and 4000 × 2400 pixels in size. The images of 4200 × 2400 pixels were 
then divided into 252 sub-images of 200 × 200 pixels and 112 sub- 
images of 300 × 300 pixels, while the images of 4000 × 2400 pixels 
were divided into 60 sub-images of 400 × 400 pixels. As shown in Fig. 1, 
each size of image block was assigned one of two labels: “nonspray” or 

Fig. 1. Examples of images used for training, validation, and testing the weed 
classification models. 
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“spray,” with “nonspray” representing sub-images without weeds and 
thus requiring no herbicide application, while “spray” representing sub- 
images containing weeds and therefore requiring spot-spaying to ach
ieve precision weed control. To fully evaluate the performance of the 
proposed method on data with different labels and image sizes, we 
designed nine datasets, as shown in Table 1. Each dataset includes four 
categories of data used for labeled training, unlabeled training, valida
tion, and testing. The labeled training and unlabeled training data were 
utilized to train the model and update the training parameters. The 
model’s hyperparameters were adjusted based on the results of the 
validation data. Finally, the performance of the model was evaluated 
using the testing data. The labeled data was divided into 200, 400, and 
600 labels for each pixel size. For the same image dataset, the data was 
augmented with labels derived from the data with fewer labels. This 
prevented the impact on model training performance due to the inclu
sion of unrelated label data. 

2.2. Proposed method 

This section presents a proposed SSL method based on the attention 
mechanism in detail. The proposed method improved the SSL algorithm 
Fixmatch (Sohn et al., 2020), combining the methods of consistency 
regularization and pseudo labels, simplifying the current SSL algorithms 
and attaining superior performance. To prevent incorrectly labeling 
unlabeled data with pseudo-labels, we introduced the convolutional 
block attention module (CBAM) with a hybrid attention mechanism to 
improve the performance of convolutional neural networks (Woo et al., 
2018). CBAM allowed for automatic learning of the most important 
features for the current task, thereby focusing attention on these fea
tures. CBAM comprised a channel attention module and a spatial 
attention module. When an input feature map F ∈ RC×H×W is an input, 
the channel attention module performs a 1-dimensional convolution 
Mc ∈ RC×1×1, and the output of the convolution is multiplied by the 
original feature to obtain the output result F′. F′ is input into spatial 
attention module, which performs a 2-dimensional convolution Mc ∈

R1×H×W, and the output result is multiplied by the original feature to 
obtain the feature F″. The formulas for calculating F′ and F″ are as 
follows: 

F′ = Mc(F) ⊗ F
F″ = Mc(F′) ⊗ F′ (1)  

Where ⊗ represents element multiplication. Fig. 2 shows the result of 
adding CBAM to a ResBlock in ResNet50 (He et al., 2016). The figure 
shows that the input feature map is reduced in dimensionality through 
two parallel MaxPool layers and AvgPool layers. It then passes through 
the Share MLP module, where the number of channels is first com
pressed to 1/r of the original, then expanded to the original number of 
channels. It then goes through the ReLU activation function to get two 
activated results. These two output results are element-wisely added and 
then passed through a sigmoid activation function to obtain the output 
result of the channel attention module, which is then multiplied by the 
original feature map. Channel attention module calculates weights for 
each channel and multiplies them onto the input feature map. In this 
way, the output feature map retains more important channel informa
tion while less important channel information is weakened. The output 
result of channel attention module then passes through MaxPool and 
AvgPool layers to obtain two feature maps of size 1 × H × W, which are 
concatenated through the Concave operation. The resulting feature map 
is transformed into a single-channel feature map through a 7 × 7 
convolution and then passes through a sigmoid to obtain the feature map 
of spatial attention module, which is finally multiplied by the original 
feature map. Spatial attention module adjusts the importance of features 
at different positions by calculating weights for each position and 
multiplying them onto the input feature map. In this way, more 
important information in positions is retained in the output, while less 
important information in positions is weakened. 

For binary or multi-class classification, Dl = {(xb, pb)}
B
b=1 is used as 

the input for labeled data, where B is the total number of labeled input 
images, xb represents a single training image, and pb is the label corre
sponding to the image. Dul = {ui}

N
i=1 is used as the input for unlabeled 

data, where N is the total number of unlabeled input images, and ui is the 
unlabeled input image. H(p, q) represents the cross-entropy between the 
probability distributions p and q, and pm(y|x) represents the predicted 
distribution produced by the model for the input x. The proposed 
methods are continuously used the data augmentation method reported 
by Sohn et al. (2020). ш( ⋅) and m( ⋅) represent strong and weak data 
augmentation methods, respectively. For labeled data, normal super
vised learning is used for training, and the cross-entropy loss function is 
used to calculate the labeled loss l s, according to the following formula: 

l s =
1
B

∑B

b=1
H(pb, pm(y|ш(xb))) (2) 

For unlabeled data, ш(⋅) and m(⋅) are used to augment the unlabeled 
samples to predict the augmented samples. The samples enhanced with 
ш(⋅) are input into the attention model. When the highest predicted 
probability of the output result is greater than the given confidence 
threshold τ, the samples are considered valid and are assigned corre
sponding pseudo-labels. The samples enhanced with m(⋅) are input into 
the attention model, and the cross-entropy loss between the output 

Table 1 
Training, validation, and testing dataset specifications.  

Training Validation Testing 

Image size Class Labeled 
training 

Unlabeled 
training     

————————————image 
quantity——————————— 

200 × 200 
pixels 

Nonspray 100 7000 300 300  

Spray 100 300 300 
300 × 300 

pixels 
Nonspray 100 7000 300 300  

Spray 100 300 300 
400 × 400 

pixels 
Nonspray 100 7000 300 300  

Spray 100 300 300 
200 × 200 

pixels 
Nonspray 200 7000 300 300  

Spray 200 300 300 
300 × 300 

pixels 
Nonspray 200 7000 300 300  

Spray 200 300 300 
400 × 400 

pixels 
Nonspray 200 7000 300 300  

Spray 200 300 300 
200 × 200 

pixels 
Nonspray 300 7000 300 300  

Spray 300 300 300 
300 × 300 

pixels 
Nonspray 300 7000 300 300  

Spray 300 300 300 
400 × 400 

pixels 
Nonspray 300 7000 300 300  

Spray 300 300 300  

Fig. 2. CBAM integrated with a ResBlock in ResNet50.  
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result and the samples with pseudo-labels assigned by the corresponding 
ш(⋅) operation is calculated to obtain the unlabeled loss l u, according to 
the following formula: 

l u =
1
N

∑N

i=1
1(max (pm(y|ш(ui)))> τ)H(p̂m(y|ш(ui)), pm(y|m(ui))) (3) 

The pseudo-label of the corresponding ui sample is denoted as 
P̂m(y|ш(ui)). By training the model with labeled and unlabeled data, the 
cross-entropy loss l s of the labeled data and the cross-entropy loss l u of 
the unlabeled data are calculated to obtain the total loss l t. The total loss 
is calculated with the following formula, where λ is the weight coeffi
cient of l u: 

l t = l s + λul u (4)  

2.3. Experiment design 

The proposed method with three baseline methods was examined to 
verify its effectiveness for weed detection. The first baseline was a FSL 
method using a standard CNN model with ResNet50 as the backbone 
network, which was trained solely with labeled data. This method was 
used to validate the performance of SSL. The second baseline is the 
mean-teacher model, a SSL method that forms a target-generating 
teacher model by averaging the model weights based on consistency 
regularization. This method was used to validate the superiority of SSL 
models based on consistency regularization and pseudo-labeling. The 
third baseline was the Fixmatch, which combined consistency regula
rization and pseudo-labeling to validate the performance of the pro
posed method. In order to standardize variables and ensure the accuracy 
of the results, the mean-teacher, Fixmatch, and the proposed methods 
were all based on the ResNet50 backbone network. 

To evaluate the performance of the proposed method, training and 
validation were conducted on the datasets shown in Table 1. The images 
had pixels of 200 × 200, 300 × 300, and 400 × 400; for each image size, 
the number of labeled training images per class was set to 100, 200, and 
300, respectively. A total of 7000 images of each pixel size were used as 
unlabeled training. The test and validation datasets each comprised 300 
images per class, totaling 600 images. Of these data, the minimum 
amount of labeled data (200 labels) accounted for 2.38%, while the 
maximum amount of labeled data (600 labels) accounted for only 
6.82%. The performance of the proposed method on data with the same 
label but different pixel sizes was verified by comparing the training 
results of datasets with the same label, but different pixel sizes. Likewise, 
the performance of the proposed method on data with the same pixel 
size but different amounts of labels was verified by comparing the 
training results of datasets with the same pixel size but different 
amounts of labels. 

For both fully-supervised and semi-supervised image classification 
neural networks, validation, and test results were arranged in a confu
sion matrix with four possible outcomes, including true positive (tp), 
false positive (fp), true negative (tn), and false negative (fn). Tp repre
sents the model correctly identifying the target weed; fp represents the 
model incorrectly predicting the target weed; tn represents the model 
correctly identifying images without the target weed; fn represents the 
model failing to predict the real target. The confusion matrix was used to 
calculate accuracy, precision, recall, and F1 scores. Accuracy measures 

the overall correctness of the predictions by calculating the ratio of 
correctly predicted instances (both tp and tn) to the total number of 
instances. Precision is a metric that measures the proportion of true 
positive predictions out of all positive predictions made by the system. In 
the context of sprayer applications, precision indicates how accurately 
the system identifies the areas that need to be sprayed. A high precision 
score means the system has a low rate of false positives, i.e., it correctly 
identifies the areas requiring spraying and minimizes unnecessary 
spraying in non-target areas. Recall, also known as sensitivity or true 
positive rate, measures the proportion of true positives predicted by the 
system out of all actual positive instances in the dataset. In sprayer ap
plications, a recall would indicate how effectively the system detects the 
areas that require spraying. A high recall score means the system has a 
low rate of false negatives, i.e., it identifies most areas that need to be 
sprayed and avoids missing significant portions. The F1 score is a widely 
used metric for evaluating the performance of classification systems, 
particularly when dealing with imbalanced datasets. The F1 score pro
vides a balanced view of precision and recall. It helps assess the sprayer 
system’s overall effectiveness by considering both false positives and 
false negatives. Maximizing the F1 score ensures a good trade-off be
tween precision and recall, aiming for optimal performance in detecting 
and spraying target areas while minimizing errors. Accuracy, precision, 
recall, and F1 score were calculated using the following formulas: 

Accuracy =
tp + tn

tp + tn + fp + fn
(5)  

Precision =
tp

tp + fp
(6)  

Recall =
tp

tp + fn
(7)  

F1 score =
2 × Precision × Recall

Precision + Recall
(8) 

For the validation data, the performance of different models was 
evaluated using the average precision, average recall, and average F1 
score, which were calculated using the following formulas, where CN 

was the number of classes, and in this case, CN = 2. 

Avg Pre =
1

CN

∑CN

i=1
Precision (9)  

Avg Rec =
1

CN

∑CN

i=1
Recall (10)  

Avg F1 =
1

CN

∑CN

i=1
F1 (11) 

The experimental configurations and the hyperparameters used for 
training the neural networks are presented in Table 2. In order to control 
the variables between the methods, the training hyperparameters for all 
methods were unified. The ImageNet database (Deng et al., 2009) was 
used to pre-train all neural networks. By setting the threshold τ to 0.95, 
the unlabeled data only gave a pseudo label and joined in the model 
training if the confidence of the prediction was above the preset 
threshold. This threshold filtered out images that were incorrectly 

Table 2 
Values of the hyperparameters for developing the weed classification models.  

Deep learning architecture Optimizer Learning rate policy Base learning rate Weight decay Training batch size Evaluation batch size Momentum 

Fullysupervised AdamW LambdaLR 5e-5 0.0005 8 16 0.9 
Mean teacher AdamW LambdaLR 5e-5 0.0005 8 16 0.9 
Fixmatch AdamW LambdaLR 5e-5 0.0005 8 16 0.9 
Proposed method AdamW LambdaLR 5e-5 0.0005 8 16 0.9 

Abbreviations: Adam, adaptive moment estimation; AdamW, Adam with decoupled weight decay. 
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Table 3 
Image classification neural networks validation and testing results for the detection of broadleaf weed seedlings in wheat.  

Deep learning architecture Labeled Image size Validation Testing 

Best_Acc Avg_Pre Avg_Rec Avg_F1 Accuracy Precision Recall F1 

Fullysupervised 100 200 × 200 0.8200 0.8201 0.8200 0.8200 0.7583 0.7700 0.7370 0.7530 
Fullysupervised 100 300 × 300 0.6433 0.6717 0.6433 0.6280 0.6316 0.6500 0.5700 0.6070 
Fullysupervised 100 400 × 400 0.7433 0.7458 0.7433 0.7427 0.6100 0.6940 0.3930 0.5020 
Meanteacher 100 200 × 200 0.8333 0.8348 0.8333 0.8331 0.7817 0.8240 0.7170 0.7660 
Meanteacher 100 300 × 300 0.7033 0.7158 0.7033 0.6990 0.6433 0.5920 0.9200 0.7210 
Meanteacher 100 400 × 400 0.8017 0.8058 0.8017 0.8010 0.6580 0.6270 0.7830 0.6960 
Fixmatch 100 200 × 200 0.8683 0.8684 0.8683 0.8683 0.8083 0.7810 0.8570 0.8170 
Fixmatch 100 300 × 300 0.7267 0.7537 0.7267 0.7192 0.6700 0.6400 0.7770 0.6020 
Fixmatch 100 400 × 400 0.8450 0.8529 0.8450 0.8441 0.7250 0.8170 0.5800 0.6780 
Proposed method 100 200 × 200 0.9850 0.9850 0.9850 0.9850 0.9600 0.9600 0.9600 0.9600 
Proposed method 100 300 × 300 0.8217 0.8512 0.8217 0.8178 0.8160 0.8470 0.7730 0.8080 
Proposed method 100 400 × 400 0.9400 0.9401 0.9400 0.9400 0.8417 0.9560 0.7170 0.8190 
Fullysupervised 200 200 × 200 0.8667 0.8677 0.8677 0.8666 0.8367 0.8880 0.7700 0.8250 
Fullysupervised 200 300 × 300 0.6783 0.7103 0.6783 0.6656 0.6300 0.7070 0.4530 0.5510 
Fullysupervised 200 400 × 400 0.8333 0.8351 0.8333 0.8331 0.6400 0.9290 0.3030 0.4570 
Meanteacher 200 200 × 200 0.8683 0.8705 0.8683 0.8681 0.8283 0.8660 0.7770 0.8190 
Meanteacher 200 300 × 300 0.7500 0.7550 0.7500 0.7488 0.6333 0.6680 0.5300 0.5910 
Meanteacher 200 400 × 400 0.8050 0.8068 0.8050 0.8047 0.7200 0.7200 0.7200 0.7200 
Fixmatch 200 200 × 200 0.9417 0.9416 0.9416 0.9416 0.8417 0.7920 0.9270 0.8540 
Fixmatch 200 300 × 300 0.7550 0.7740 0.7550 0.7507 0.7383 0.7130 0.7970 0.7530 
Fixmatch 200 400 × 400 0.9400 0.9424 0.9400 0.9400 0.7550 0.9750 0.5230 0.6810 
Proposed method 200 200 × 200 0.9883 0.9883 0.9883 0.9883 0.9633 0.9790 0.9670 0.9630 
Proposed method 200 300 × 300 0.8650 0.8880 0.8650 0.8630 0.8250 0.9530 0.6830 0.7960 
Proposed method 200 400 × 400 0.9483 0.9489 0.9483 0.9483 0.8717 0.9700 0.7670 0.8570 
Fullysupervised 300 200 × 200 0.9417 0.9418 0.9417 0.9417 0.9217 0.9440 0.8970 0.9200 
Fullysupervised 300 300 × 300 0.7250 0.7250 0.7250 0.7250 0.6660 0.6540 0.7070 0.6790 
Fullysupervised 300 400 × 400 0.9033 0.9064 0.9033 0.9032 0.6550 0.7820 0.4300 0.5550 
Meanteacher 300 200 × 200 0.8783 0.8788 0.8783 0.8783 0.8200 0.8900 0.7300 0.8020 
Meanteacher 300 300 × 300 0.7533 0.7584 0.7533 0.7521 0.6700 0.6760 0.6530 0.6640 
Meanteacher 300 400 × 400 0.8733 0.8754 0.8733 0.8732 0.7733 0.7970 0.7330 0.7640 
Fixmatch 300 200 × 200 0.9700 0.9703 0.9700 0.9700 0.9167 0.8770 0.9700 0.9210 
Fixmatch 300 300 × 300 0.7650 0.7798 0.7650 0.7619 0.7433 0.7320 0.7670 0.7490 
Fixmatch 300 400 × 400 0.9550 0.9561 0.9550 0.9550 0.7680 0.9880 0.5430 0.7010 
Proposed method 300 200 × 200 0.9917 0.9917 0.9917 0.9917 0.9800 0.9900 0.9700 0.9800 
Proposed method 300 300 × 300 0.9183 0.9241 0.9183 0.9181 0.8583 0.9320 0.7730 0.8450 
Proposed method 300 400 × 400 0.9617 0.9619 0.9617 0.9617 0.8767 0.9870 0.7630 0.8610  

Fig. 3. Comparison of accuracy evaluation of four methods for 200 × 200 pixel images.  
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assigned pseudo labels, ensuring the accuracy of the model training 
data. All models were trained on the open-source PyTorch deep learning 
framework (version 1.8.1, Facebook, San Jose, California, United States) 
and were tested on an Ubuntu 20.04.1 system with a workstation 
equipped with an Intel(R) Core(TM) i9-10920X CPU @ 3.50 GHz and an 
NVIDIA RTX 3080 GPU with 128GB of memory. 

3. Results and discussion 

In the present study, the SSL and FSL neural networks were trained 

with different training image sizes and varying numbers of labeled im
ages. The performance of weed detection was evaluated using the same 
test and validation datasets for training images of the same size, as 
shown in Table 3. For different sizes of training images, all methods 
showed excellent performances with an accuracy of ≥0.985 on 200 ×
200 pixels labeled training images under conditions of fewer labels. In 
terms of different numbers of labels, compared to FSL algorithms, the 
proposed method significantly improved accuracy (≥16.5%) when the 
neural networks were trained using training images with fewer labels. 
Overall, the results indicate that the proposed method can reliably 

Fig. 4. Comparison of accuracy evaluation of four methods for 300 × 300 pixel images.  

Fig. 5. Comparison of accuracy evaluation of four methods for 400 × 400 pixel images.  
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detect broadleaf weed seedlings growing in wheat, compared to FSL 
algorithms and previous SSL algorithms, with less labeled training data. 

The accuracy changes of the four methods on different pixel sizes of 

the training images are compared in Figs. 3–5. Obviously, after 100 
training rounds, the proposed method achieved a higher accuracy 
compared to the other three methods. After training with 200 × 200 
pixel images, the proposed method showed a 16.5%, 12.16%, and 5% 
increase in accuracy over FSL for 100, 200, and 300 labeled data, 
respectively. When using 400 × 400 pixel images, the proposed method 
showed a 19.67%, 11.50%, and 5.84% increase in accuracy, respec
tively, when compared to FSL developed using 100, 200, and 300 
labeled data. The proposed method showed an increase of 17.84%, 
18.67%, and 19.33% in accuracy for 300 × 300 pixel images compared 
to FSL developed using 100, 200, and 300 labeled data. The increase in 
the number of training images can improve the neural network’s per
formance (Zhuang et al., 2021), resulting in a higher accuracy closer to 
1. Therefore, as the number of training images used increases, the 
improvement in performance of the proposed method compared to the 
FSL model will be smaller. However, the upward trend observed in the 
300 × 300 pixel data suggests that the 300 × 300 pixel image training 
data is insufficient and requires more data for training. Therefore, the 
300 × 300 pixel image is unsuitable for few-labeled SSL tasks. 

The proposed method and Fixmatch outperform the FSL models in 
terms of performance on different resolution training images. The 
Meanteacher method, however, failed to accurately assign correct 

Fig. 6. Accuracy of each class of the proposed method on different datasets.  

Fig. 7. Grad-CAM interpretability analysis results of four models for 200 × 200 
pixel images. 

Fig. 8. Grad-CAM interpretability analysis results of four models for 300 × 300 
pixel images. 
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pseudo-labels in the unlabeled data, resulting in a certain amount of 
noisy samples in the training dataset and thus performing worse than the 
FSL models on the labeled 600 images with 200 × 200 and 400 × 400 
pixels. To obtain a more comprehensive comparison among the four 
methods, three metrics, including Avg_Pre score, Avg_Rec score, and 
Avg_F1 score, were compared based on the results at the best epoch of 
accuracy. The proposed method exhibited the best performance in all 
metrics for different resolutions and numbers of labeled images. Addi
tionally, due to the limited training data, all models inevitably experi
enced varying degrees of overfitting on the testing dataset. The proposed 
method demonstrated the greatest reduction in overfitting when 
compared to the FSL method and the two SSL methods. 

The effectiveness of proposed method is demonstrated in terms of the 
accuracy for each class in various datasets, as illustrated in Fig. 6. The 
weighted avg represents the average evaluation metric calculated by 
weighting according to the number of samples. From the figure, it can be 
seen that the accuracy for the label “spray” is relatively low (≤77.3%) on 
300 × 300 and 400 × 400 pixels images. However, it shows a significant 
improvement with an accuracy of ≥94.7% on 200 × 200 pixels images. 
The weighted avg also exhibited a relatively high accuracy (≥96%) 
compared to 300 × 300 and 400 × 400 pixels images. Furthermore, in 
order to make the results of the four models more intuitive, two samples 

from each pixel size of the training data were selected, for a total of six 
samples, as shown in Figs. 7–9. The attention features and regions of 
different models were visualized using the gradient-weighted class 
activation mapping (Grad-CAM) method (Selvaraju et al., 2017). 
Compared to the FSL and the two SSL methods, the proposed method 
provided more detailed information and more accurately localized the 
position of weeds in the image. Therefore, this indicates that the 
attention mechanism played an important role in the classifier learning 
process of the proposed method. 

To the best of our knowledge, no research has investigated the effect 
of different pixel images on the performance of the proposed SSL model 
for weed detection. In previous research, Zhuang et al. (2021) conducted 
an investigation for FSL models using images with pixel sizes of 200 ×
200, 300 × 300, and 400 × 400. The authors evaluated four FSL models, 
including Densest (Iandola et al., 2014), VGGNet (Simonyan and Zis
serman, 2014), ResNet (He et al., 2016), and AlexNet (Krizhevsky et al., 
2017), achieved F1 scores of ≥0.86; however, this investigation used 22, 
000 training images. Despite using only 200 images for training, the 
proposed method in this study achieved a high F1 score of ≥0.96 for 
weed classification and detection. Furthermore, the findings of this 
study suggest 200 × 200 pixel images are more suitable for 
semi-supervised weed classification than 300 × 300 and 400 × 400 pixel 
images. 

Our results clearly suggest that training SSL models using small-size 
training images of 200 × 200 pixel offers three advantages: (1) improved 
weed detection and classification performance compared to models 
trained with large training image sizes, (2) more precise herbicide spray 
using smart sprayers, suggesting potential savings in herbicide, and (3) 
time and labor-efficiencies due to the fact that only six images at a 
resolution of 4300 × 2418 pixels need to be cropped and manual labeled 
when preparing the dataset for training the proposed SSL models. 

During image processing, the appropriate image size is selected to 
gridline the images (Jin et al., 2022b). The semi-supervised learning 
approach is employed to classify the grids, determining the category of 
each grid. Grids classified as “Spray” indicate the need for herbicide 
spraying, while those classified as “Nonspray” do not require herbicide 
spraying. Various postemergence (POST) herbicides, such as sulfonyl
ureas (e.g., floridula, trichoneuron-methyl, and thifensulfuron), syn
thetic auxins (e.g., 2,4-D, dicamba, MCPA), and photosystem II 
inhibitors (e.g., metribuzin), are used for POST control of broadleaf 
weeds in wheat (Baghestani et al., 2008; Curran et al., 2015; Chhokar 
et al., 2006; Zargar et al., 2019). Smart sprayers can spot-spray these 
POST herbicides onto the grids containing weeds, thereby reducing 
herbicide input. The high level of weed detection and classification 
performance, coupled with the decreased cost of model training, could 
simplify the development of precision spray systems, leading to a 
reduction in herbicide inputs without compromising weed control 
effectiveness in integrated weed management programs. 

4. Conclusion 

In this research, a SSL algorithm based on an attention mechanism is 
developed for weed detection in wheat. This is the first effort to intro
duce a SSL algorithm for weed detection in wheat, which has been 
improved based on the existing semi-supervised model. This has greatly 
reduced the impact of noisy samples, thus giving the proposed method a 
stronger ability to capture weed features. The application of the SSL 
algorithm developed in this study could significantly contribute to the 
detection of weeds growing in wheat or other small grain crops. The 
proposed method, which is based on average consistency regularization 
and pseudo labels, trained the model using both labeled and unlabeled 
data. The introduction of the mixed attention mechanism CBAM auto
matically learns the relative importance of channels and positions, thus 
improving the model’s performance. Furthermore, the proposed method 
is significantly more effective than an FSL model. Training the model 
with 200 × 200 pixel images is more suitable for the semi-supervised 

Fig. 9. Grad-CAM interpretability analysis results of four models for 400 × 400 
pixel images. 
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weed classification task than using 300 × 300 or 400 × 400 pixel im
ages. Compared to previous SSL methods, the proposed SSL method can 
greatly reduce the time and manual cost of data labeling, thus simpli
fying the development of weed classifiers. To further improve the per
formance of weed detection, an additional study will explore extended 
SSL model algorithms, such as CRMatch (Fan et al., 2023). In the present 
study, the captured images in the experimental sites included only 
broadleaf weed species. Further studies are needed to evaluate the 
performances of these techniques in detecting and discriminating newly 
emerged grass weeds growing in wheat. 
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